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Lattice plasma in infinitely many dimensions
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The equation of state of a neutral plasma in infinitely many dimensions has been obtained exactly.
Only the second-order virial coefficient is nonvanishing. The present method can also be used as an

approximation for lower dimensions.
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I. INTRODUCTION

Recently, it has pointed out that considerable simpli-
fications arise in many-body problems in the limit of
infinite space dimensions, both for equilibrium proper-
ties [1-3] and for dynamical problems (thermodynamic
kinetic theory) [4]. The effects of high spatial dimen-
sionality on the qualitative properties lead to dramatic
structural simplifications of a hard core continuum fluid
in infinite dimensions [5-8] and also for lattice gases
[9]. Therefore, we expect such simplifications also for
the high-dimensionality limit of a neutral plasma. The
Coulomb interaction between two charged particles at a
distance r is determined by the characteristic long range
potential
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where K is the volume of the unit shell
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This potential guarantees the validity of the Maxwell law
f EdA =egy 1. The Fourier representation of this poten-
tial has the well known structure
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which is independent of dimension. In finite dimensions,
this potential leads to a complicated diagrammatic rep-
resentations, which allows only a perturbation theory-
like approximation (ring graph summation [10], mean
field approximation [11]). The consideration of the short
range hard core interaction leads to additional compli-
cations. Therefore, we introduce a simple cubic lattice
in which each lattice site can be occupied by only one
particle. This lattice model, called a lattice plasma, re-
alizes therefore the short range excluded volume effect
and we must determine only the contribution of the long
range interaction. However, as we will show in this pa-
per, considerable simplifications occur for a plasma on a
regular lattice in the limit of infinitely many space di-
mensions and we are able to give an equation of state for
the thermodynamic properties of such a plasma.
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II. LATTICE PLASMA IN HIGH DIMENSION

We introduce a d-dimensional cubic lattice of the unit
length a with G = N¢ lattice sites, i.e., a volume V =
Ga®. The plasma can be described by three states e; for
each lattice site 2, given by

+eg with probability £
0 with probability 1 —p

—eo with probability  £.
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In addition, we can define an important thermodynamic
energy scale as the energy of two neighboring particles
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and the ratio
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At this point we can start the important discussion
about the thermodynamic existence of a plasma. An es-
sential question is the energy that is necessary to separate
a larger neutral particle into two separated charged parti-
cles. Without all quantum mechanics effects and internal
energy barriers, we need at least an energy of the order
¢o for the separation of two neighboring particles. This
energy can be obtained only from the kinetic energy of
the particles. The average kinetic energy of a particle
is given by the equal distribution theorem E = ngT.
Therefore, we can expect that a plasma occurs if the ra-
tio between ¢o and E becomes of order 1, i.e., we have
the plasma criterion 1 > ¢o/E ~ (d~! and therefore for
large dimensions the condition ¢ < d for the existence of
a plasma.

Very important is the connection between the real
space lattice (given by the lattice sites 7 with position
r;) and the lattice in ¢ space (Fourier space) with sites
at the position q. Note that the number of ¢ vectors is
equal to the number G of lattice sites in real space and
that each g vector occupies a volume (27)¢/V in g space.
Thus we get the lattice representation of the long range
Coulomb potential
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Note that the sum runs over all g vectors of g space with-
out ¢ = 0. This vector corresponds to a total integral (or
sum) over the full real space and can separated by a con-
stant energy.

Using the conservation conditions
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we get the canonical partition function
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® (The sum 3’ mean the summation over all pairs of dif-
ferent sites.) The partition function is realized as a sum
over all configurations {e} of charge distributions on the
lattice. Using s; = e;e™! with the states 0,41 we get

(8)
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The quadratic term is now transformed into a linear term a3 1
by introducing a functional integration over an additional Z = Z, / Dy H (g_) exp{ — Z — (V)2
complex field ¥,. Hence we get, with 8 = Be2/(2e0V), P B 7 BG
Booch, / ( q* ) In[1 — .
7 = eZeoVa D 2 X exp n[l — p + pcos(2¢;)] 7, (16)
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or by defining
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and using the Fourier representation of the field ¥
(13)
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we obtain
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The potential part of this partition function is deter-
mined by the real part of . Therefore, we can separate
Y = ¢; +1ix; (15)

and realize the integration over x. Hence

where V¢, is the discrete representation of the gradient.
The prefactor of (V¢)? is given by
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with o4 = d(d — 2)K4. Therefore, with decreasing ¢ or
increasing dimension d, the value ,BG increases rapidly of
order ~ d%/2. On the other hand, a reasonable ( is at
least of order d, i.e., the prefactor of (V¢)2 becomes very
large in the case of a high-dimensional lattice plasma.
This means that the thermodynamic fluctuations are of

order | V¢ | ~ a;/ 2¢1/2; we found no essential change of
the field ¢ (given by A¢ ~ 1), at least over a large dis-

tance Ly ~ agl/ 2¢-1/2, Consequently, for sufficiently
large d we have always the case that a finite volume
V = Lg is small in comparison to the volume Vy = Lg
of a relative constant field ¢. Therefore, we expect in
the volume V only small fluctuations around the average
value of ¢. As a result of this discussion, we can use the
saddle point method for the determination of the par-
tition function Z and because the fluctuations are suffi-
ciently small, this methods becomes an exact solution for
high dimensions. The saddle point is given by ¢o = 0 and
all other multiples of 27w. Because of the above discus-
sion we can neglect all field configurations, which changes
their value by as much as 27w. Thus each relevant field
configuration shows fluctuations only around one multi-
ple of 2w. Therefore, we can restrict ourself to the case
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¢o = 0 and expand the potential in powers of the fluc-
tuations £ (¢ = ¢o + &) to second (harmonic) order. We
get, up to an irrelevant (but infinite) multiplicable con-
stant (which follows from the consideration off all other
multiples of 2m)

2= [ooI1(5)
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On integration
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Subject to (12) it follows that
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Note that the integration over g is restricted by the fi-
nite number of ¢ vectors. The usual method is to define
the cutoff by the Debye radius A, which is given by the
relation

v
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i.e., we get for the UV cutoff
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The high-dimensionally limit follows by using Stirgling’s
representation of the I' function (e = 2.73... is the Euler

|4
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number). From (20) we can define a screening length
lg = R;l
oqlp
K2 = = (23)

This k4 can interpreted as an upper cutoff (IR cutoff).
Note that kg becomes very small in the high-dimension
limit, i.e., the screening effect remains relevant for such
a length that is as large as the volume length Lo (see
also the discussion above). However, we get for the free
energy of the lattice plasma
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with n = pa~9 the particle density. The integral I; has
the structure

z
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and can be solved exactly. For small dimensions d, par-
ticular for d < 4, I(z) converges for z — oco. There-
fore, we can approximate I(A/kq) = I4(c0). [For d = 3,
I3(c0) = 1/3.] Therefore, we can give an interpretation
of the saddle point approximation in the low-dimensional
case: The transformation in the representation of the
field ¢ is closed to a resummation of the original ring
graphs of the plasma [10]. Moreover, we can say that this
approximation becomes exactly in the high-dimensional
limit d — oo.

It is very important for the interpretation of the effects
of a long range Coulomb potential (d < 4) on the free
energy

d
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that F' does not depend on the length scale of the lattice
units a. For large d and large ratios A/kq4 it is sufficient to
replace the integral (25) by [ z¢~ldz[z=*/2—276/3+- -]
(first two nonvanishing terms of the Taylor expansion)
and we get

I(=) = 2(Zd:44) N 3(jid:66) + 27
and therefore
le;gT = T4 —dgfizn)dnAd (% 4
<[ S ()]
=i e (3)
<|i-Samg (B ] e

or by using (4), (5), and
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we get

This free energy depends now on the length scale of a unit
lattice site, i.e., the volume of the lattice particle vo = al
controls, for dimensions d > 4, the free energy. This is a
very important effect. Whereas for low dimensions d < 4
the infrared (long range) divergences ~ r2~% are domi-
nant, we have the inverse situation for high dimensions
d > 4, i.e., the (ultraviolet) short range divergences of
the same power low ~ 7279 remain relevant. Because
of the finite distance between neighboring lattice sites,
the diameter a and therefore the volume vq of the lattice
particles control the free energy
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Finally, we get from (31) the pressure
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The lattice spacing dependence raises the question of
which scaling should be used in the continuum -case.
In general, the lattice unit corresponds to the minimal
distance of two particles. Therefore, the lattice plasma
should have the same properties as a hard core system
with Coulomb interaction with a hard core diameter of
the length a; only the prefactors should be changed be-
cause the lattice plasma has cubiclike particles, whereas

in the continuous case usually hard spheres are used.
Therefore, an exact prediction for the continuum hard
sphere case is very difficult by using only the present re-
sults, but the general scaling F' ~ a*~% can also be pre-
dicted for the continuous case. Therefore, we get an ex-
tremely strong divergence for d — oo and simultaneously
a — 0. A detailed analysis for the plasma in continuous
space is in preparation.
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